
Size Balanced Tree
From PEGWiki

A size balanced tree (SBT) is a self-balancing binary search tree (BBST) first published by Chinese student
Qifeng Chen in 2007. The tree is rebalanced by examining the sizes of each node's subtrees. Its abbreviation
resulted in many nicknames given by Chinese informatics competitors, including "sha bi" tree (Chinese: 傻屄
树; pinyin: shǎ bī shù; literally meaning "dumb cunt tree") and "super BT", which is a homophone to the
Chinese term for snot (Chinese: 鼻涕; pinyin: bítì) suggesting that it is messy to implement. Contrary to what
its nicknames suggest, this data structure can be very useful, and is also known to be easy to implement. Since
the only extra piece of information that needs to be stored is sizes of the nodes (instead of other "useless" fields
such as randomized weights in treaps or colours in red–black tress), this makes it very convenient to implement
the select-by-rank and get-rank operations (easily transforming it into an order statistic tree). It supports
standard binary search tree operations such as insertion, deletion, and searching in O(log n) time. According to
Chen's paper, "it works much faster than many other famous BSTs due to the tendency of a perfect BST in
practice."[1]

Contents
1 Properties
2 Rotations

2.1 Left Rotation
2.2 Right Rotation

3 Maintenance
4 Fundamental Operations

4.1 Searching
4.2 Get Max/Min
4.3 Iteration
4.4 Insertion
4.5 Deletion

5 Order Statistics
5.1 Select
5.2 Rank

6 References

Properties
The size balanced tree examines each node's size (i.e. the number of nodes below it in the subtree) to determine
when rotations should be performed. Each node in the tree satisfies the following two properties:

1.
2.

In other words, each child node of is not smaller in size than the child nodes of its sibling. Clearly, we should
consider the sizes of nonexistent children and siblings to be 0.

Consider the following example where is the node in question, are its child nodes, and
are subtrees which also satisfy the above SBT properties on their own.

http://wcipeg.com/wiki/index.php?title=Self-balancing_binary_search_tree&action=edit&redlink=1
http://wcipeg.com/wiki/index.php?title=Order_statistic_tree&action=edit&redlink=1
Ajay Gupta
NOTE: Authenticity of source is not verified, as size balanced trees have been known since at least 1970s. See Weight Balanced trees at
https://en.wikipedia.org/wiki/Weight-balanced_tree�

Ajay Gupta
from http://wcipeg.com/wiki/Size_Balanced_Tree

 T
 / \
 / \
 L R
 / \ / \
 A B C D

Then, the node must satisfy:

Rotations
The rotations of SBTs are analogous to those in other self-balancing binary search trees.

 ------------- Right Rotation ------------
 | Q | ---------------> | P |
 | / \ | | / \ |
 -- P C | | A Q --
 / \ <--- Left Rotation ---> / \
 A B <--------------- B C

Left Rotation

def left-rotate(t):
 k ← t.right
 t.right ← k.left
 k.left ← t
 k.size ← t.size
 t.size ← t.left.size + t.right.size + 1
 t ← k

Right Rotation

def right-rotate(t):
 k ← t.left
 t.left ← k.right
 k.right ← t
 k.size ← t.size
 t.size ← t.left.size + t.right.size + 1
 t ← k

Maintenance
After insertions and deletions, the new sizes of subtrees may violate the two properties above. Thus, we define a
procedure maintain(T) to rebalance the SBT rooted at the node . This should be called with the precondition
that 's children are already SBTs themselves. Since property 1 and 2 are symmetrical, we will only discuss
property 1.

There are 4 cases to consider when rebalancing.

Case 1:

Perhaps after inserting a value to , the scenario below (figure 1) may occur, leading to
.

To fix this, we first perform a right-rotate on (figure 2) and then a left-rotate on (figure
3).

 Fig. 1: Fig. 2: Fig. 3:
 insert(R,v) right-rotate(R) left-rotate(T)

 T T C
 / \ / \ / \
 / \ / \ / \
 L R L C T R
 / \ / \ / \ / \ / \ / \
 A B C D A B E R L E F D
 / \ / \ / \
 E F F D A B

After these operations, the properties of the entire tree in figure 3 becomes unpredictable. Luckily, the
subtrees are still SBTs. Thus, we can recursively call maintain on subtrees and

 to take care of them.
Now that all of the subtrees are SBTs, we still have to make sure that the root node satisfies the SBT
properties. So, we call maintain one last time on root node .

Case 2:

Perhaps after inserting a value to , the scenario below (figure 4) may occur, leading to
. This is similar to case 1, except that instead of going below , and

instead goes below . We can omit them from the diagram.
Fixing this, we will perform a left-rotate on the root node , obtaining the structure in figure 5.

 Fig. 4: Fig. 5:
 insert(R,v) left-rotate(T)
 T R
 / \ / \
 / \ / \
 L R T D
 / \ / \ / \
 A B C D L C
 / \
 A B

After this, the tree rooted at R is still not yet a SBT because or
 may be true. So, we continue to call maintain on .

Now that we have satisfied the precondition of making 's subtrees SBTs, we may call maintain on
itself.

Case 3:

Symmetrical to case 1.

Case 4:

Symmetrical to case 2.

With this casework being taken care of, it becomes straightforward to actually implement maintain.

def maintain(t):

 if t.left.size < t.right.left.size: //case 1
 right-rotate(t.right)
 left-rotate(t)
 maintain(t.left)
 maintain(t.right)

 maintain(t)

 else if t.left.size < t.right.right.size: //case 2
 left-rotate(t)
 maintain(t.left)
 maintain(t)

 else if t.right.size < t.left.right.size: //case 1'
 left-rotate(t.left)
 right-rotate(t)
 maintain(t.left)
 maintain(t.right)
 maintain(t)

 else if t.right.size < t.left.left.size: //case 2'
 right-rotate(t)
 maintain(t.right)
 maintain(t)

This pseudocode is slightly slow and redundant. Since we know that the two SBT properties will usually be
satisfied, the following is an optimization. Simply add an extra boolean flag to the maintain parameters,
indicating whether cases 1/2 or their symmetrical cases are being examined. If the flag is TRUE, then we
examine cases 1 and 2, otherwise we examine cases 3 and 4. Doing so will eliminate many unnecessary
comparisons.

def maintain(t, flag):

 if flag:
 if t.left.size < t.right.left.size: //case 1
 right-rotate(t.right)
 left-rotate(t)
 else if t.left.size < t.right.right.size: //case 2
 left-rotate(t)
 else:
 done
 else:
 if t.right.size < t.left.right.size: //case 1'
 left-rotate(t.left)
 right-rotate(t)
 else if t.right.size < t.left.left.size: //case 2'
 right-rotate(t)
 else:
 done

 maintain(t.left, FALSE) //maintain the left subtree
 maintain(t.right, TRUE) //maintain the right subtree
 maintain(t, TRUE) //maintain the whole tree
 maintain(t, FALSE) //maintain the whole tree

The proof for why maintain(t.left, TRUE) and maintain(t.right, FALSE) are unnecessary can be found
in section 6 of Chen's paper. Furthermore, the running time of maintain is O(1) amortized (which means that
you do not have to worry about it not terminating).

Fundamental Operations

Searching

Searching in SBTs is exactly the same as searching in other binary search trees. The following iterative
implementation will return a pointer to the node in the SBT rooted at which has key .

def search(t, k):
 x ← t
 while x is not NIL:
 if k < x.key then x ← x.left
 else if x.key < k then x ← x.right

 else return x
 return NIL //key not found!

Get Max/Min

The size of the SBT is already stored. These operations can thus be handled trivially by the select operation
implemented in the section below.

Iteration

Iterating a SBT is exactly the same as iterating a normal binary search tree (by repeatedly finding nodes'
predecessors/successors).

Insertion

Inserting into a SBT is very simple. The only difference from normal binary search trees is that it has an extra
call to maintain at the end. The following recursive version will insert the node into the SBT rooted at .

def insert(t, x):
 if x is NIL:
 t ← x
 else
 t.size ← t.size + 1
 if x.key < t.key:
 insert(t.left, x)
 else
 insert(t.right, x)
 maintain(t, x.key ≥ t.key)

Deletion

Deletion is exactly the same as in normal binary search trees. It is not even necessary to call maintain
afterwards. The proof for this is as follows: A SBT will have all of its properties before deletion. Even though
we cannot guarantee that the SBT will retain its balanced properties after the insertion, we know for sure that its
height (and thus, its running time) will not increase. Given this, it is clear that calling maintain after deleting is
extraneous.

Order Statistics
Since SBTs already conveniently store the field to maintain balance, nothing else is needed to transform it
into a fully-fledged order statistics tree.

Select

The following function returns a pointer to the th smallest element in the SBT rooted at , where is zero-
indexed. To make this one-indexed, simply change "r ← t.left.size" to "r ← t.left.size + 1" and "i -
(r + 1)" to "i - r".

def select(t, i):
 r ← t.left.size
 if i = r:
 return t
 else if i < r:
 return select(t.left, i)
 else
 return select(t.right, i - (r + 1))

Rank

Determining the rank of an element in a SBT is exactly the same as doing so for a regular binary search tree.

References
1. Chen, Qifeng. "Size Balanced Tree" (http://www.scribd.com/doc/3072015/), Guandong, China, 29

December 2006.

Retrieved from "http://wcipeg.com/wiki/index.php?title=Size_Balanced_Tree&oldid=1819"

This page was last modified on 8 September 2014, at 20:33.
Content is available under Attribution 3.0 Unported unless otherwise noted.

http://www.scribd.com/doc/3072015/
http://wcipeg.com/wiki/index.php?title=Size_Balanced_Tree&oldid=1819
http://creativecommons.org/licenses/by/3.0/

